The Man-Machine Integration Design & Analysis System (MIDAS): Recent Improvements

Sandra G. Hart
Brian F. Gore
Peter A. Jarvis
NASA Ames Research Center
Moffett Field, CA 94035

Sandra.G.Hart@NASA.gov/650 604 6072 10/19/04

Outline

- Human Performance Modeling
- MIDAS Phase 1: Initial design
- Early applications
- ❖MIDAS Phase 2: Move from Lisp to C++
- Recent applications
- MIDAS Phase 3: PC Port/Integrate Apex

Human Performance Models: Components

Human Performance Models can...

- Generate hardware, software, training requirements for tasks that will involve human operators
- Depict operators performing tasks in prototype workspaces and/or in remote or risky environments
- Perform tradeoff analyses among alternative designs and candidate procedures, saving time and money
- Identify general human/system vulnerabilities to estimate overall system performance and reliability
- Provide dynamic, animated examples for training and developers
- Generate realistic schedules and procedures

Phase 1

Overview

A comprehensive suite of computational tools - - 3D rapid prototyping, models of perception, cognition, response, real- and fast-time simulation, performance analysis, visualization - - for designing and analyzing human/machine systems was developed primarily in Lisp on a fleet of SGIs

Features

- ❖ Pioneered the development of an engineering design environment with integrated tools for rapid prototyping, visualization, simulation and analysis
- Advanced the capabilities and use of computational representations of human performance in design including a state of the art anthropometric model (Jack®)
- Flexible enough to support a range of potential users and target applications

But....

- Component models written in Lisp, Fortran, C, C++
- Required a suite of SGI machines
- Modeled a single operator
- Time based rather than event based; scheduler established optimal inter-leaving of task components
- No emergent behaviors

Richmond, CA Police: 911 Dispatch

Goal: Upgrade the facilities and procedures used in the 911 dispatch facility

Accomplished:

- Modeled control console and dispatch activities in MIDAS
- Evaluated prototype graphical decision aid

US Army Air Warrior

Goal: Establish baseline performance measures for crews flying Longbow Apache with and without MOPP gear

Accomplished:

- ❖ Modeled copilot/gunner with Jack® (95th male <> 5th female)
- Rendered cockpit using CAD files from manufacturer
- Simulated performance of more than 400 activities

NASA Shuttle Upgrade

Goal: Support development of an advanced orbiter cockpit with an improved display/control design

Accomplished:

- Created virtual rendition of current shuttle cockpit
- Conducted simulation of first 8 min of nominal ascent
- Provided quantitative measures of workload/SA, timing

Phase 2

Features

- Decreased model development from months to weeks
- ❖ Increased run-time efficiency from 50x RT to near RT
- Multiple operators
- Modeled external vision, audition, situation awareness
- Conditional behaviors emerging from interaction of top-down goals and environmentally driven contexts
- Option of non-proprietary "head & hands" model

But...

- ❖ The interface still user *un*-friendly
- SGI platform
- Cognitive models no longer state of the art
- Performance moderating functions not integrated

Anthropometric Models

- Anthropometric models provide an animated, 3D graphical representation of one or more modeled human operators for visualization
- ②Jack ® (developed at U Penn/distributed by UGS): full-body figure & realistic movements
- Head and Hands model: government-developed representation adequate for many purposes for users without a Jack license

Crew Station/Equipment Models

- The "crew station" is a collection of equipment with which operators interact
- Crew station models may be given a graphical representation for animation
- Multiple crew stations per vehicle and multiple operators per crew station possible

Comparison of Models to Simulator Data

NASA-ARC/Army

Nominal Approach & Landing Simulation

- ❖ PF scanning for TFX, runway
- PNF monitoring PFD, Nav
- PF/PNF monitoring radio
- Flaps 30°/set & confirm
- PF requests before landing checklist
- PNF checks/responds hear down
- PF confirms visually/verbally
- PNF checks/responds flaps 30
- PF confirms visually/verbally
- PNF checks/responds speed brakes set
- PF confirms visually/verbally
- PNF declares checklist complete
- PF sets/declares DA at 650
- PNF visually confirms DA set
- Note passing FAF
- Confirms final descent initiated

Traffic Call During Approach

- Final approach checklist is complete
- ATC call with traffic advisory
- Both pilots scan for traffic "I don't see it"
- Neither pilot notices as the decision altitude is passed
- After the fact, the First Officer notices: "We're past FAF and not descending"
- Crew must decide whether to continue with the approach or abort

("last-waypoint" (0.0 0.0 0.0))

("head-orientation" (0.0 0.0))

("vehicle—state" (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0))

[Time 500] fo-jill completed task: (fixate-object nav-right)

Virtual Glovebox

Life Sciences Glovebox Payload Development Unit received at Ames from the National Aerospace Development Agency of Japan (NASDA)

Life Sciences Glove Box

Goal: Predict astronauts' performance of complex experiments designed to answer questions about living organisms' adaptation to the space environment

Objectives: Evaluate feasibility of following proposed procedures within time/performance constraints; ID factors that will increase risk of mission failure [e.g., waiting too long to photograph slides; interruptions; task requires (unavailable) resource(s)]

Life Sciences Glove Box Simulation

Challenges:

- Astronauts must follow detailed instructions within strict time constraints; failure to do so introduces risk of science mission failure
- Predicting interactive influences of microgravity (posture, bracing, precise movements, placing, moving, stowing) when developing and evaluating procedures
- Watching an animated dry run enables efficient communication among scientists, implementers, astronauts; more effective training

The Task:

- Turn on experimental equipment (monitor, microscope, camera)
- Measure cell density/viability for each of 6 samples
 - Invert sample vial
 - Place aliquot of sample on slide
 - Place drop of viability stain in sample
 - Record time on sample record
 - Place cover slip on slide
 - Observe on microscope
 - Take photographs within specific time window
- Dispose of trash, return vials to containers, turn equipment off

Cell Staining/Photographing Experiment

Phase 3

MIDAS v3.0 Features

- Runs on high-end PC
- Simple model of microgravity influence on performance
- Physics model of microgravity impact on objects available
- Simple within-task fatigue model implemented
- Fatigue state model (U Penn/Astronaut Scheduling Assistant) selected
- Notion of task duration - how long a task should take as well as how long it did take
- Grasping, moving, manipulating objects in workspace
- Apex will become the heart of the Task Manager and enable multitasking, task prioritization, shedding, deferral, resumption
- Task primitive definitions include failure mode(s) (time/quality); result in emergent behaviors
- Mission success/performance measures computed: vulnerability to error, slipped schedules; performance degradation

MIDAS v3.0 Structure

Typical Outputs

Overall Attention Data Analysis (cell-3.run)

Total Simulation Time: 83.1 Seconds

	VISUAL	AUDITO	SPATIAL	VERBAL
MEAN	3.46	0.00	1.24	0.00
S.D	1.57	0.00	0.74	0.00
LOWER 95% C.1	3.35	0.00	1.19	0.00
UPPER 95% C.1	3.56	0.00	1.29	0.00
MINIMUM	0.00	0.00	0.00	0.00
MINTXAM	10.18	0.00	4.98	0.00

Overall Attention Data Analysis (cell-1.run)

VISUAL AUDITO SPATIAL VERBAL MOTOR VOICE

Total Simulation Time: 12.0 Seconds

MOTOR VOICE

0.00

0.00

2.57

0.96

Total Simulation Time: 83.1 Seconds

	Overall Error Data Analysis			
	ERROR %	TIME PEN	QUALITY	
MEAN	16	157	 0	
S.D	25	21	0	
MINIMUM	1	150	0	
MUMIKAM	90	200	70	

MEAN	3.36	0.00	1.09	0.00	2.05	0.00
S.D	1.07	0.00	0.35	0.00	0.67	0.00
LOWER 95% C.I	3.17	0.00	1.03	0.00	1.93	0.00
UPPER 95% C.I	3.55	0.00	1.15	0.00	2.17	0.00
MINIMUM	0.00	0.00	0.00	0.00	0.00	0.00
MUMIXAM	3.70	0.00	1.20	0.00	2.60	0.00

Total Simulation Time: 12.0 Seconds

Overall Error Data Analysis

	ERROR %	TIME PEN	QUALITY
MEAN	81	150	<u>-</u>
S.D	28	0	0
MINIMUM	2	150	0
MUMIKAM	90	150	99

"Fresh"

"Tired"

Conclusion

- MIDAS gives users the ability to model the functional and physical aspects of operators, systems, and environments and bring these models together in an interactive, event-filled simulation for quantitative and visual analysis
- The interplay between top-down and bottom-up processes enables the emergence of unforseen, un-scripted behaviors
- MIDAS 3.0 features a PC platform, a significantly enhanced cognitive model (Apex), and a suite of performance modifying functions, resulting in a more flexible and useful tool for representing humans operating in a variety of environments to a broader range of users
- ❖ The government has done what it set out to do - spur development of human performance modeling tools integrated into a design environment and our goal goal continues to be to add functionality with each new application

